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Mathematical Models for Pulse-Heating Experiments1

J. Spis� iak,2 F. Righini,3, 4 and G. C. Bussolino3

Accurate measurements of thermophysical properties at high temperatures
(above 1000 K) have been obtained with millisecond pulse-heating techniques
using tubular specimens with a blackbody hole. In the recent trend toward
applications, simpler specimens in the form of rods or strips have been used,
with simultaneous measurement of the normal spectral emissivity using either
laser polarimetry or integrating sphere reflectometry. In these experiments the
estimation of the heat capacity and of the hemispherical total emissivity is based
on various computational methods that were derived assuming that the tem-
perature was uniform in the central part of the specimen (long thin-rod
approximation). The validity of this approach when using specimens with large
cross sections (rods, strips) and when measuring temperature on the specimen
surface must be verified. The application of the long thin-rod approximation to
pulse-heating experiments is reconsidered, and an analytical solution of the heat
equation that takes into account the temperature dependence of thermophysical
properties is presented. A numerical model that takes into account the tem-
perature variations across the specimen has been developed. This model can be
used in simulated experiments to assess the magnitude of specific phenomena
due to the temperature gradient inside the specimen, in relation to the specimen
geometry and to the specific thermophysical properties of different materials.

KEY WORDS: high temperature; long thin-rod approximation; modeling;
pulse heating.

1. INTRODUCTION

In the last thirty years pulse-heating techniques have become accepted
methods for the accurate measurement of several thermophysical properties
of electrical conductors in the high temperature range [1, 2]. The most
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accurate results have been obtained in the characterization of reference
materials, using tubular specimens with a blackbody hole [3]; in these
cases the temperature is measured with a high-speed pyrometer focussed
inside a blackbody machined in the tubular specimen. The blackbody con-
figuration provides true temperature measurement conditions, with the
radiation emitted by the blackbody being related to the integral of the
longitudinal temperature distribution of the inner part of the tubular
specimen. The emissivity of the realized blackbody is generally high
(>0.97), but there is uncertainty associated with the limited knowledge of
the wall emissivity, surface conditions, and geometrical limitations.

The trend of pulse-heating techniques in recent years has been toward
applications oriented activities. Specimens with blackbody holes are dif-
ficult to machine, and often materials are not available in tubular form.
Two different methods have been developed for direct measurement of
the normal spectral emissivity of the specimen surface in pulse-heating
conditions. The National Institute of Standards and Technology (NIST,
Gaithersburg, Maryland, U.S.A.) and Containerless Research Inc. (CRI,
Chicago, Illinois, U.S.A.) have jointly applied laser polarimetry [4]. This
technique uses rod specimens and measures directly the normal spectral
emissivity of the specimen surface by analyzing the polarization state of the
radiation reflected by the specimen surface during the pulse experiment.
The technique has been developed for measurements in the solid phase and
has been extended to measurements in the liquid state using wire specimens
[5, 6]. Alternatively, the Istituto di Metrologia ``Gustavo Colonnetti''
(IMGC, Torino, Italy) has developed an integrating sphere reflectometric
technique to measure the normal spectral emissivity of a strip specimen
during pulse heating with measurements performed in the solid phase
including the melting plateau [7, 8].

Measurements of the heat capacity and of the electrical resistivity of
molybdenum in the temperature range 2000 to 2800 K performed at the
NIST [9] have indicated the validity of the laser polarimetry technique,
providing results of similar accuracy as those obtained using tubular
specimens with a blackbody configuration. Similarly, experimental results
of the heat capacity and of the electrical resistivity of niobium in the tem-
perature range 1400 to 2700 K performed at the IMGC [10] on strip
specimens with integrating sphere reflectometry provided results of com-
parable accuracy with respect to measurements performed earlier using a
blackbody configuration.

For both techniques (laser polarimetry and integrating sphere reflec-
tometry) the main difference with respect to measurements in a blackbody
configuration is that the temperature of a small portion of the specimen
surface is assumed to be representative of the entire specimen. For very
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accurate experimental work, we consider in this paper the limitations of
this assumption, by developing a mathematical model that describes a long
thick specimen, with a temperature gradient along its cross section. The
mathematical formulation used in the computation of thermophysical
properties from experimental quantities in pulse-heating experiments has
generally accepted a mathematical simplification known as the ``long thin
rod'' approximation. This simplification implies that the specimen is suf-
ficiently thin to have no significant temperature gradient along its cross sec-
tion. In examining this approximation, an analytical solution is presented
that takes into account the temperature dependence of thermophysical
properties.

2. FORMULATION OF THE PROBLEM

Two specimen geometries are considered: a rod (Fig. 1) and a strip
(Fig. 2), representative, respectively, of laser polarimetry and of integrating
sphere reflectometry experiments. The specimens are considered to be
geometrically perfect (no variations of cross section) and with a normal
spectral emissivity identical at any surface point. With these assumptions,
simultaneous measurement at the same wavelength of the normal spectral

Fig. 1. Schematic of the cylindrical specimen used for pulse-heating experiments with
laser polarimetry.
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Fig. 2. Schematic of the strip specimen used in integrating sphere reflectometry under
pulse-heating conditions.

emissivity and of the radiance temperature of the surface can provide infor-
mation on the true temperature of the specimen.

Heat diffusion in electrical conductors is described by the partial dif-
ferential equation:

$Cp
�T
�t

={ } * {T++ i } {T+\ i2 (1)

where each term of Eq. (1) describes a phenomenon taking place in the
specimen on the passage of an electrical current. The symbols denote the
following properties: $, density; Cp , heat capacity at constant pressure;
T, temperature; {T, temperature gradient; *, thermal conductivity; +,
Thomson coefficient; i, electrical current density; and \, electrical resistivity.
The derivation of the heat equation for metals and semiconductors on the
basis of nonequilibrium thermodynamics can be found in the literature
[11]. In pulse-heating experiments with a sufficiently fast heating rate,
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temperature profiles with a flat central part [dT (x, y, z, t)�dz=0] are
obtained. For this central portion of the specimen, one can write a sim-
plified version of Eq. (1) that takes into account the radial temperature
distribution in a cylindrical coordinate system where the z-axis is the center
of the rod-shaped specimen (Fig. 1),

$Cp
�T (r, t)

�t
=

1
r

�
�r \r*

�T (r, t)
�r ++\[i(r, t)]2 (2a)

or for a slab (or a wide strip) where the x-axis is perpendicular to the
surface (Fig. 2)

$Cp
�T (x, t)

�t
=

�
�x \*

�T (x, t)
�x ++\[i(x, t)]2 (2b)

The Thomson heat term + i } {T in these cases is zero because the direction
of the current density i and of the temperature gradient {T are perpen-
dicular to each other.

The Eqs. (2) are a mathematical model for a long and thick specimen
because they take into consideration the temperature gradient in the cross
section of the specimen, which is a physical consequence of the radiation
losses from the specimen surface. The possibility of practical use of Eqs. (2)
for numerical simulations of the experiments is limited, because the current
distribution in the specimen is unknown. On the other hand the spatial
distribution of the input power can be computed from the voltage drop
measured in the central part of the specimen. Using the simple Ohm's law
we have to be aware that we are neglecting

v the skin effect when the current is switched on,

v other phenomena which may also contribute to the electric field.

The influence of a nonuniform electric field in pulse-heating experiments
was studied by Loho� fer [12], who pointed out that the transient skin effect
has a limited influence because of its short duration. Depending on the
geometrical configuration of the experimental setup, the skin effect vanishes
a few milliseconds after the current is switched on. In a subsecond experi-
ment, during this transient of millisecond duration, the specimen is still at
very low temperatures where no pyrometric measurements are generally
performed. Consequently the skin effect taking place at the beginning of the
experiment can be neglected.

The relation between the electric field and the current density for
quasi-stationary processes (like the subsecond experiments, where the
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specimen is heated by a dc current pulse lasting several hundred milli-
seconds) is governed by the equation

E=
1
e

{!&S {T+\ i (3)

where ! is the chemical potential; e, the electrical charge of one electron;
and S, the Seebeck coefficient. In pulse-heating experiments large currents
(thousands of amps) are applied and, therefore, the last term in Eq. (3)
is dominant while the remaining terms can be neglected. In a scalar
representation,

E(r, t)$\i(r, t) (4)

By substituting Eq. (4) into Eqs. (2) we obtain relations that are suitable
for the computation of the temperature profiles inside the specimen. For a
rod-shaped specimen

$Cp
�T (r, t)

�t
=

1
r

�
�r \r*

�T (r, t)
�r ++

[E(r, t)]2

\
(5)

and a similar expression holds for a slab (or a wide strip). During the free
cooling period the power is switched off and the last term in Eq. (5) is
equal to zero.

This partial differential equation must be solved with the appropriate
initial and boundary conditions. At the beginning of the experiment we
assume that the specimen is in temperature equilibrium with its surround-
ings at ambient temperature Ta . The initial condition for the heating
period is therefore Tinitial(r, t)=Ta . The initial condition for the cooling
period is obtained from the last temperature distribution during the heating
period. In this mathematical model the boundary conditions are quite
simple because heat is propagating only in one direction (r for rod and x
for slab) towards the specimen surface. At the surface the heat balance is
defined by the Fourier and Stefan�Boltzmann laws:

&*
�Tsurface

�x
==ht _(T 4

surface&T 2
a) (6)

where =ht is the hemispherical total emissivity and _ is the Stefan�Boltzmann
constant. An additional boundary condition can be written on account of
the symmetry of the model. This does not improve the result but it saves
some computation time. At the center of the specimen (in the rod case r=0
and in the slab case x=0), the temperature profiles maintain their symmetry
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�T��r | r=0=0 and �T��x |x=0=0, respectively. It can be easily demonstrated
that the classical relations used for the computation of heat capacity and
hemispherical total emissivity in subsecond pulse-heating experiments [1]
are derived from a simplified version of the more general case presented
earlier. We can consider a simplified model (generally known as a long thin
rod approximation) in which the entire volume of the central part of the
specimen is uniformly heated and cooled. This simplification means that
the cross-sectional thermal conduction is neglected, and the radiation heat
losses at the surface are included in the heat equation in order to maintain
the power balance of the central part of the rapidly heated specimen. By
integrating Eqs. (2) over the volume and adding the radiation loss term, we
get

mCp \dT
dt +h

=P&=ht_A(T 4&T 4
a) (7)

where m and A are the mass and the radiating surface area of the central
portion of the specimen while P is the input power. During cooling the
current is switched off (P=0)

mCp \dT
dt +c

=&=ht_A(T 4&T 4
a) (8)

Eqs. (7) and (8) are the power balance relations usually considered for the
computation of thermophysical properties in pulse-heating experiments
using a long thin rod approximation [1].

3. SIMULATION OF PULSE-HEATING EXPERIMENTS

Subsecond pulse-heating experiments are performed in a wide tem-
perature range (up to several thousand kelvins). The thermophysical
properties of the specimen change considerably with temperature in such
a wide range, and this variation must be considered in any numerical
simulation. The temperature dependence is generally represented by means
of polynomial functions, e.g.,

3.1. Long Thin-Rod Approximation

If we apply the temperature dependence of properties Cp and =ht to
Eq. (7) and use as input power the experimentally measured quantities
voltage drop U and current I passing through the specimen, we obtain

UI&=ht(T ) A_(T 4&T 4
a)=mCp(T )

dT
dt

(10)
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If the input power is expressed as

v P=P(t) function of time t, then the simulation according to Eq. (10)
can be performed via a Runge�Kutta algorithm,

v P=P(T ) function of temperature T, then even an analytical solu-
tion of Eq. (10) is possible.

Let us assume that, besides thermophysical properties, also the input
power P=P(T ) can be represented as a polynomial in temperature. In this
case we obtain a first-order ordinary differential equation,

dt
dT

=
mCp(T )

P(T )&=ht(T ) _A(T 4&T 4
a)

(11)

that can be integrated to obtain

t=tin+|
T

Tin

mCp(�) d�

P(�)&=ht(T ) _A(�4&�4
a)

(12)

This equation can be easily solved either numerically by means of a
Romberg integration [13] or analytically, with the initial condition that at
time tin the temperature is Tin .

The analytical solution of Eq. (12) can be computed by dividing the
subintegral function into rational fractions. The advantage of the analytical
solution of the integral is that the computation is very fast with high
numerical precision (better than 10&8 K). The method is especially suitable
for the simulation of the cooling phase on account of zero input power
(P=0) where the initial condition is the highest temperature reached in the
heating period.

3.2. Long Thick-Rod Approximation

Equation (5), together with the surface condition Eq. (6), is a non-
linear parabolic heat equation. These equations with an initial condition
can be solved numerically by means of an explicit finite difference method.
This approach uses a forward finite difference for the time derivative and
a central finite difference for the diffusive term. Let 2t and 2x denote dis-
crete steps in time and space, respectively. The temperature T n

j =T ( j 2x,
n 2t) is now evaluated only in this mesh that consists of equidistant points.
The advantage of the explicit method is that the temperature at time j+1
is computed according to the properties and temperatures at time j

$Cp

T n+1
j &T n

j

2t
=

*j+1�2(T n
j+1&T n

j )&*j&1�2(T n
j &T n

j&1)

2x2 +
E 2

\
(13)
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or

T n+1
j =[1&:(*j+1�2&*j&1�2)] T n

j +:*j+1�2T n
j+1+:* j&1�2 T n

j&1+
E 2 2t
\ $Cp

(14)

where :=2t�$Cp 2x2, and *j+1�2 or *j&1�2 is the average thermal conduc-
tivity between the mesh points j+1, j and j, j&1, defined as

*j+1�2=0.5[*(T n
j+1)+*(T n

j )], *j&1�2=0.5[*(T n
j )+*(T n

j&1)] (15)

The numerical system, Eq. (14), is stable if all terms on the right-hand side
are non-negative. It can be easily proven that if discretization parameters
satisfy the following inequality,

2t�min
j \2x2 Cpj $j

2*j+1�2 + (16)

then the computation is stable. A similar inequality can be written also for
the cylindrical coordinate system. The boundary condition (Eq. 6) is used
to compute the temperature on the surface while for the remaining points,
Eq. (14) is applied. The precision of computed temperature profiles using
a mesh of 200 points is better then 10&4 K.

4. CONCLUSIONS

The application of the long thin-rod approximation to pulse-heating
experiments has been reconsidered, and an analytical solution that takes
into account the temperature dependence of the thermophysical properties
has been presented. Extensive software programs have been developed for
the numerical simulation of pulse-heating experiments of subsecond dura-
tion. The mathematical models are based both on a long thin rod and also
on a long thick rod (or a long thick strip). This second and more general
model considers the temperature gradients in the specimen cross section.
The application of the more general mathematical model to a tungsten rod
specimen with a diameter of 3.2 mm is presented in Fig. 3 by plotting the
temperature profiles inside the rod as a function of temperature during a
pulse-heating experiment where the melting point is reached in 0.42 s. The
temperature profile is well within experimental uncertainties in temperature
measurements up to 2000 K, but becomes significant above this temperature.
The work is continuing with a systematic application of the developed soft-
ware to different materials and different specimen geometries, to evaluate
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Fig. 3. Simulated temperature profile inside a tungsten rod of 3.2 mm diameter
taken to its melting point in a pulse-heating experiment of 0.42 s duration.

potential problems in pulse-heating experiments when using specimens with
large cross sections. The influence of the direct measurement of the radiance
temperature on the specimen surface with simultaneous determination of
the normal spectral emissivity via laser polarimetry or integrating sphere
reflectometry on the accuracy of thermophysical properties will be investi-
gated, using realistic experimental conditions.
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